

SCI-DAQ Software Development Kit (SDK)

User Manual V1.0

SciCore Instruments, Inc.

Chapter 1. SCI-DAQ SDK Overview

1-1. SDK structure

The overall structure of the SDK is described as the diagram below:

Located at the lowest level is the SCI DAQ hardware which is physically connected to the host PC via a
PCI express bus or a USB cable. The SCI DAQ driver is responsible for direct reading and writing the
control registers in the DAQ hardware to control the DMA (direct memory access) process, and
transferring the acquired data from the DAQ hardware to the memory of the PC. The communicator
between the driver and Window applications is SCIDAQEngine.DLL, which is a dynamically linked library
providing the application programming interface (API) for application software running on Windows.
Software sample programs based on Microsoft .NET development platform are provided to demonstrate
the simplified software programming interface to the DAQ hardware.

After successful installation of the DAQ hardware and driver, the user can run the "SCI DAQ" software
program to check the functions of the DAQ device. The user can also develop windows application
software including the data acquisitions functions by calling the API functions supported by the SDK. It
is recommended that the user copy the "SCIDAQEngine.DLL" to the same folder where the application
software starts, so the application software can talk with the driver to control hardware functions.

1-2. Programming flow chart

The complete flow chart of a data acquisition task performed by the application software is provided
below.

This flow chart includes following necessary steps:

Step 1: Open the DAQ device by calling the "DAQ_OpenDevice" API function.

Step 2: Configure the acquisition task by calling the "DAQ_ConfigureAcquisition" API function and
providing parameters defining the size of a data frame for the DAQ to acquire.

Step 3: Start the acquisition by calling the "DAQ_StartAcquisition" API function.

Step 4: Check if there is a new data frame available for transfer to the application software, by calling
the "DAQ_NewDataFrameAvailalbe" API function. If no repeat step 4; if yes go to step 5.

Step 5: Transfer the newly acquired data frame to the application software, by calling the
"DAQ_GetLatestFrame" API function.

Step 6: Check if the acquisition task is finished. If no go to step 4 again; if yes go to step 7.

Step 7: Stop the data acquisition process by calling the "DAQ_StopAcquisition" API function.

Step 8: If there are other data acquisition tasks then go to step 2 again, otherwise close the DAQ device
by calling the "DAQ_CloseDevice" API function.

1-3. Data transfer process

The complete process of the data transfer from the A/D converter on the DAQ hardware to the
user application software is described in the diagram below:

1. The A/D converter transfers the acquired data points to the on-board memory of the DAQ
hardware. The data points are organized into multiple data records with first data point in a
data record synchronized with the trigger event, after the user calling the
"DAQ_ConfigureAcquisition" API function.

2. The multiple data records are transferred to the data buffer in the PC memory via the PCI
express interface, after the user calling the "DAQ_StartAcquisition" API function. The
transferred data records are organized into data frames and stored in the data frame buffer

allocated by the DAQ driver software. When a new data frame is completely transferred, the
driver setup an internal flag indicating a new data frame is available.

3. The user application software inquiries the driver if a new data frame is available by calling
the "DAQ_NewDataFrameAvailalbe" API function. If there is a new frame available the application
software then call the "DAQ_GetLatestFrame" API function to copy the data from the driver data frame
buffer to the application software data buffer for further processing or display. The driver software will
clear the internal flag indicating no new data frame is available, until another new data frame become
available again later.

Chapter 2. SDK demonstration

This chapter provides a demonstration of writing a Windows application software performing some
simple data acquisition tasks using this SDK. This demonstration is provided in Visual Basic.NET using
Microsoft Visual Studio 2010 develop tool. The design concepts apply to other programming languages
supported by newer versions of Microsoft Visual Studio.

1. Open "MyDAQ.sln" in MicroSoft Visual Studio.

2. Double click the "Form_MyDAQ.vb" in Solution Explorer to view the main form in design mode. There
are three buttons "Open Device", "Start Acquisition", and "Close Device" in the form.

3. Click Menu (Debug->Start Debuging) or press F5 key to run the program.

4. Click "Open Device" button to open the DAQ device.

5. Click "Start Acquisition" button to acquire one data frame and display the data in the PictureBox. In
this example, a 2Vpp sine wave signal is connected to channel A input of the DAQ device.

6. Click "Close Device" button to close the DAQ device.

7. The complete source code of this demo program is shown below. The API functions used in this
program are highlighted in red, and they are called in the order as describe in the previous flow chart.

Please note in this example the data display is using the GDI+ methods drawing the PictureBox. The line
drawing speed is pretty slow in this process. The data acquisition speed is actually much faster than
drawing the data.

Above SDK demonstration program can be found in the USB installation disk come with the data
acquisition device.

Chapter 3. API functions

This chapter provides a list of library functions provided by SCI-DAQ SDK.

DAQ_CheckSystem

Description: Check how many compatible DAQ devices are installed in the system, and assign a
device ID starting from 0 for each device detected.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_CheckSystem Lib "SCIDAQEngine.dll" (
ByRef DeviceNum As Integer
) As Integer
Parameters:
 [out] DeviceNum: The pointer that contains the value of number of compatible devices found.
Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_ OpenDevice

Description: Open a specified device for data acquisition tasks.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_OpenDevice Lib "SCIDAQEngine.dll" (
ByVal DeviceID As Integer
) As Integer
Parameters:
[in] DeviceID: The ID of the device to be opened.
Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_ CloseDevice

Description: Close the currently opened device.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_CloseDevice Lib "SCIDAQEngine.dll" (
) As Integer
Parameters:
None
Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_GetDeviceModel

Description: Get the device model value for the specified device ID.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_GetDeviceModel Lib "SCIDAQEngine.dll" (
ByVal DeviceID As Integer,
ByRef DeviceModelValue As Integer
) As Integer
Parameters:
[in] DeviceID: The ID of the device to check its model.
[out] DeviceModelValue: The pointer that contains the value of the device model
DeviceModelValue
5
6
8
9
-1

Device model name
DAQ0504M
DAQ1502S
DAQ0804S
DAQ2502S
Unknown

Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_ConfigAcquisition

Description: Set parameters to configure the device ready for data acquisition.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_ConfigAcquisition Lib "SCIDAQEngine.dll" (
ByVal RecordLen As UInteger,
ByVal RecordNum As UInteger
) As Integer
Parameters:
[in] RecordLen: The number of data points to acquire per record.
[in] RecordNum: The number of records to acquire per data frame.
Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_StartAcquisition

Description: Start data acquisition immediately.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_StartAcquisition Lib "SCIDAQEngine.dll" (
) As Integer
Parameters:
None
Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_StopAcquisition

Description: Stop current data acquisition process.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_StopAcquisition Lib "SCIDAQEngine.dll" (
) As Integer
Parameters:
None
Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_NewDataFrameAvailable

Description: Check if there is a new data frame available for transfer.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_NewDataFrameAvailable Lib "SCIDAQEngine.dll" (
) As Boolean
Parameters:
None
Return value:
true: There is a new data frame ready for transfer.
false: No new data frame is available.

DAQ_GetLatestFrame

Description: Check if there is a new data frame available for transfer.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_GetLatestFrame Lib "SCIDAQEngine.dll" (
ByRef DataBuffer_CHA As Short,
Optional ByRef DataBuffer_CHB As Short = Nothing,
Optional ByRef DataBuffer_CHC As Short = Nothing,
Optional ByRef DataBuffer_CHD As Short = Nothing
) As Integer
Parameters:
[out] DataBuffer_CHA: Pointer to the buffer to be filled with the data acquired from Channel A.
[out] DataBuffer_CHB: Pointer to the buffer to be filled with the data acquired from Channel B.
[out] DataBuffer_CHC: Pointer to the buffer to be filled with the data acquired from Channel C.
[out] DataBuffer_CHD: Pointer to the buffer to be filled with the data acquired from Channel D.
Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_GetRecordLength

Description: Get the number of data points per record in the current acquisition settings.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_GetRecordLength Lib "SCIDAQEngine.dll" (ByRef
RecordLength As UInteger) As Integer
Parameters:
[out] RecordLength: The pointer that contains the value of the record length.
Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_GetMaxRecordLength

Description: Get the maximum number of data points per record supported by current
acquisition device.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_GetMaxRecordLength Lib "SCIDAQEngine.dll" (
ByRef MaxRecordLength As UInteger
) As Integer
Parameters:
[out] MaxRecordLength: The pointer that contains the value of the maximum record length.
Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_GetRecordNumber

Description: Get the number of records per data frame in the current acquisition settings.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_GetRecordNumber Lib "SCIDAQEngine.dll" (ByRef
RecordNumber As UInteger) As Integer
Parameters:
[out] RecordNumber: The pointer that contains the value of the record number.
Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_SetInputChannel

Description: Select the analog input channel in the data acquisition device.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_SetInputChannel Lib "SCIDAQEngine.dll" (
ByVal InputChannel As UInteger
) As Integer
Parameters:
[In] InputChannel: The input channel to be selected.
Value
0
1
2
3

Input channel
Channel A
Channel B
Channel C
Channel D

Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_GetInputChannel

Description: Get the analog input channel currently selected.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_GetInputChannel Lib "SCIDAQEngine.dll" (
ByRef InputChannel As UInteger
) As Integer
Parameters:
[Out] InputChannel: The pointer that contains the value of the selected input channel.
Value
0
1
2
3

Input channel
Channel A
Channel B
Channel C
Channel D

Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_SetCoupling

Description: Set the coupling method for the selected channel.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_SetCoupling Lib "SCIDAQEngine.dll" (
ByVal Chan As UInteger,
ByVal Coupling As UInteger
) As Integer
Parameters:
[In] Chan: Selected input channel
[In] Coupling: Selected coupling method
Chan value
0
1
2
3

Input channel
Channel A
Channel B
Channel C
Channel D

Coupling value
0
1

Coupling method
DC coupling
AC coupling

Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_GetCoupling

Description: Get the coupling method for the selected channel.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_GetCoupling Lib "SCIDAQEngine.dll" (
ByVal Chan As UInteger,
ByRef Coupling As UInteger
) As Integer
Parameters:
[In] Chan: Selected input channel
[Out] Coupling: The pointer that contains the value of selected coupling method
Chan value
0
1
2
3

Input channel
Channel A
Channel B
Channel C
Channel D

Coupling value Coupling method

0
1

DC coupling
AC coupling

Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_SetTermination

Description: Set the termination method for the selected channel.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_SetTermination Lib "SCIDAQEngine.dll" (
ByVal Chan As UInteger,
ByVal Termination As UInteger
) As Integer
Parameters:
[In] Chan: Selected input channel
[In] Termination: Selected termination method
Chan value
0
1
2
3

Input channel
Channel A
Channel B
Channel C
Channel D

Termination value
0
1

Termination method
1M Ohm termination
50 Ohm termination

Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_GetTermination

Description: Get the termination method for the selected channel.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_GetTermination Lib "SCIDAQEngine.dll" (
ByVal Chan As UInteger,
ByRef Termination As UInteger
) As Integer
Parameters:
[In] Chan: Selected input channel

[Out] Termination: The pointer that contains the value of selected termination method

Chan value
0
1
2
3

Input channel
Channel A
Channel B
Channel C
Channel D

Termination value
0
1

Termination method
1M Ohm termination
50 Ohm termination

Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_SetGain

Description: Set the gain for the selected channel.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_SetGain Lib "SCIDAQEngine.dll" (
ByVal Chan As UInteger,
ByVal Gain As UInteger
) As Integer
Parameters:
[In] Chan: Selected input channel
[In] Gain: The selected gain index
Chan value
0
1
2
3

Input channel
Channel A
Channel B
Channel C
Channel D

Gain index
0
1
2

Gain
x 1
x 10
x 100

Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_GetGain

Description: Get the gain for the selected channel.

Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_GetGain Lib "SCIDAQEngine.dll" (
ByVal Chan As UInteger,
ByRef Gain As UInteger
) As Integer
Parameters:
[In] Chan: Selected input channel
[Out] Gain: The pointer that contains the value of selected gain index
Chan value
0
1
2
3

Input channel
Channel A
Channel B
Channel C
Channel D

Gain index
0
1
2

Gain
x 1
x 10
x 100

Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_SetAttenuation

Description: Set the attenuation method for the selected channel.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_SetAttenuation Lib "SCIDAQEngine.dll" (
ByVal Chan As UInteger,
ByVal Attenuation As UInteger
) As Integer
Parameters:
[In] Chan: Selected input channel
[In] Attenuation: Selected attenuation index
Chan value
0
1
2
3

Input channel
Channel A
Channel B
Channel C
Channel D

Attenuation index
0

Attenuation
Divided by 1

1 Divided by 2
Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_GetAttenuation

Description: Get the attenuation method for the selected channel.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_GetAttenuation Lib "SCIDAQEngine.dll" (
ByVal Chan As UInteger,
ByRef Attenuation As UInteger
) As Integer
Parameters:
[In] Chan: Selected input channel
[Out] Attenuation: The pointer that contains the value of the selected attenuation index
Chan value
0
1
2
3

Input channel
Channel A
Channel B
Channel C
Channel D

Attenuation index
0
1

Attenuation
Divided by 1
Divided by 2

Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_SetTrigger

Description: Set the trigger method.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_SetTrigger Lib "SCIDAQEngine.dll" (
ByVal Trigger As UInteger
) As Integer
Parameters:
[In] Trigger: Selected trigger method
Trigger value
0

Trigger method
Line trigger

1
2

Rising edge trigger
Falling edge trigger

Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_GetTrigger

Description: Get the trigger method.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_GetTrigger Lib "SCIDAQEngine.dll" (
ByRef Trigger As UInteger
) As Integer
Parameters:
[Out] Trigger: The pointer that contains the value of selected trigger method
Trigger value
0
1
2

Trigger method
Line trigger
Rising edge trigger
Falling edge trigger

Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_SetSamplingRate

Description: Set the sampling rate for the current data acquisition device by specifying the
sampling rate index.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_SetSamplingRate Lib "SCIDAQEngine.dll" (
ByVal SamplingRateID As UInteger
) As Integer
Parameters:
[In] SamplingRateID: The index of the selected sampling rate.
Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_GetSamplingRate

Description: Get both the sampling rate index and sampling rate in MHz for the current data
acquisition device.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_GetSamplingRate Lib "SCIDAQEngine.dll" (
ByRef SamplingRateID As UInteger,
ByRef SamplingRate_MHz As Single
) As UInteger
Parameters:
[Out] SamplingRateID: The pointer that contains the value of index of the sampling rate.
[Out] SamplingRate: The pointer that contains the value of the sample rate in MHz.
Return value:
0: Function finished successfully.
other value: Function failed.

DAQ_CheckSamplingRates

Description: Get the sampling rate in MHz associated with the sampling rate, and the total
number of sampling rates supported by current data acquisition device.
Syntax:
[C/C++]
[Visual Basic]
Declare Function DAQ_CheckSamplingRates Lib "SCIDAQEngine.dll" (
ByVal SamplingrateID As Integer,
ByRef Samplingrate_MHz As Single,
ByRef NumSamplingRates As UInteger
) As Integer
Parameters:
[In] SamplingRateID: The index of the sampling rate to check.
[Out] SamplingRate_MHz: The pointer that contains the value of the sample rate in MHz.
[Out] NumSamplingRates: The pointer that contains the value of total number of sampling rates
supported by current data acquisition device.
Return value:
0: Function finished successfully.
other value: Function failed.

Copyright © 2016 SciCore Instruments. All rights reserved.

SciCore Instruments Contact Information

SciCore Instruments, Inc.

P.O. Box 135

Long Valley, New Jersey 07853

E-mail: info@scicoreinstruments.com

Web site: www.scicoreinstruments.com

For comments and technical questions regarding SCI-DAQ SDK, send e-mail to:

support@scicoreinstruments.com

